

KINETICS OF CIILDIIOOD LEAD: THE OMAHA DUPLICATE DIET STUDY. <u>C.R. ANGLE</u>, A J KUEHNEMAN, AND W H MANTON. Univ Neb Med Ctr., Omaha, NE; Univ Texas Dallas, Richardson, TX.

ABSTRACT

The goal was to calculate the kinetics of childhood blood lead (PbB) from longitudinal studies and to relate this to experimental data. 21 children 2-3 y.o. living in pre-1955 housing in urban Omaha, a city with low water and air lead but high residual soil lead, provided "field clean" PbB q 3 mo x 4; clean catch spot UA for lead (PbU) and creatinine to estimate PbU/d q mo x 12; duplicate diets for food and water lead (PbF) q mo x 12 and handwipe lead (PbHW; 2 wipes, both hands) q mo x 12. Assays of all samples and blanks were done by TI/MS in an ultraclean laboratory. Results $(X \pm SE)$: PbB 6.4 \pm .3 μ g/dL; PbU 2.5 \pm .1 μ g/d, PbF 4.9 \pm 1.0 μ g/d; PbHW 5.6 \pm 0.3 μ g; Renal CL Pb 64.6 \pm 6.1 mL/m²/d; circulating PbB (PbB x 8% body wt) 57.7 \pm 3.3 μ g; estimated fecal (PbFe) + PbU = 1.5 (PbU) = 3.7 \pm .2 μ g/d; mean residence time (mrt) 20.2 \pm 1.1 d; $t = 14 \pm .8$ d, (cf A.C. Chamberlain et al. 1978; mrt 23 d; t = 14 d). Assuming PbU + PbFe + Pb to bone is 2 (PbU), 2 (2.5 μ g/d) = 5.0 μ g/d absorbed. If absorbed Pb is 35% of ingested Pb, Pb intake \equiv 15 μ g/d \equiv 5 μ g PbF + 10 μ g Pb non-food. PbHW x 2 or 100 mg soil with only 100 ppm Pb will account for 10 μ g non-food Pb. Despite the short t = 14 d, modest increases in non-food Pb will rapidly increase PbB. Supported by NIEHS Grant #5RO1 ES04762.

11

		SURJECTS		
	Black	Non Black	Total	
Male	3	6	9	
Female	5	7	12	
Total	8	13	21	
	Age 2.2 \pm 0.4 y PbB 6.4 \pm 0.3 (2.0 - 16.2) μ g/dL			
	Pre-1955 Housing Lead Hazard Lead Pipes		19 1 5	
	Poverty	10		

Non Poverty

METHODS

Monthly home visit x 12

1990-1992

Duplicate diet for lead, nutritional analysis

24 h food diary

Anthropometrics

Blood lead (quarterly)

Handwipe lead

Urine (clean catch) lead and creatinine

Dust index

All collections field clean; all handling in filtered air chambers; all lead assays by TI/MS isotope dilution

Lead Intake, 2-3 y.o., Omaha

	Gp 1 (15)		Gp 2 (6)
PbB μg/dL PbHW μg	< 2		<u>≥</u> 2
PbB µg/dL PbU µg/dL¹	5.6 ± 0.5 2.5 ± 0.3	•	8.6 ± 1.8 2.4 ± 0.5
Pb Absorbed μg/d ³ Pb Ingested μg/d ³	5.0 15		4.8 14.4

^{*}p < .05 Gp 1 vs Gp 2

¹Urine lead μ g/d = spot urine lead μ g/mg creatinine x 24 h creatinine, predicted by height and age. Viteri FE, Alverado J. The creatinine height index. *Pediatrics* 1970:46:696-706. Predicted PbU μ g/d (n = 252) was 1.8 x PbU measured on 11 collections of 10-24 h.

²Lead absorbed /d ≡ PbU + Pb Fecal + Pb Stored

^{= 2.0 (}PbU)

³Assumes 33% absorption. If 10% absorption of non food lead, total ingested lead \approx 38 μ g/d

Blood Lead Predicted by Handwipe at Constant Food Lead and Dust Index

Food and Non Food Lead

	Gp 1 (15)		Gp 2 (6)
PbB ug/dL PbHW µg	< 2		<u>≥</u> 2
Pb Ingested µg/d -Pb Food µg/d Pb Non Food µg/d	15.0 <u>-6.5</u> ± 0.6 8.5	•	14.4 <u>4.9</u> ± 0.7 9.5
	Environ	mental Sources	
Pb HW μg²	6.5 ± 0.6	•	3.5 ± 1.1
Pb Play Floor μg/m ²	62 ± 12		90 + 54
Pb Sill µg/m²	749 ± 163		714 ± 690
Home Index ³	6.0 ± 0.7		4.8 ± 1.1
Other ⁴		ns	

¹Pb Food/1000 kcal = 6.7 ± 0.7 (Gp 1), 4.6 ± 0.6 (Gp 2) μ g/1000 kcal

Kinetics

	Omaha 2-3 y.o.			Chamberlain - Adults ⁵	
n	15 (Gp 1)		6 (Gp 2)	3-5	
PbB µg/dL	5.6	*	8.6	²⁰³ Pb	
PbU µg/d¹	2.5		2.4		
Pb circ μg ²	48.8	*	78. 6		
Renal C _{Pb} mL/m ² /d ³	71.8	*	43.7	516	
$T 1/2 days \pm SD^4$	12.6 ± 3.7	*	18.2 ± 2.2	15.4 ± 6.0^{7}	

*p < .01 Gp 1 vs Gp 2

 1 PbU/d = PbU μ g/mg Cr x 24 h creatinine predicted by height and age.

²PbB circulating = PbB μ g/L x (8% body wt, kg).

³Renal clearance Pb mL/m²/d =

T 1/2 = .693 mean residence time (mrt) mrt = PbB circulating ug = PbB circulating ug Pb excreted/d 1.5 (PbU μg/d)

⁵Chamberlain AC, Heard MJ, Little P, et al. Investigations into Lead from Motor Vehicles. United Kingdom Atomic Energy Authority, November 1978.

Ref 5, Table 8.4 and p 92: Renal clearance = 3.82 mL/h/1.8 m² = 92 mL/d/1.8 m² = 51 mL/d/1.0 m²

Ref 5, Table 9.5

*** (3)

²Handwipe lead = total lead, 2 "wet wipes," all surfaces, both hands

³0 = minimal lead risk: 10 = maximal

⁴No significant differences Gp 1 vs Gp 2 in demographics, stature, nutritional intake, monthly dust index, lead in soil $\mu g/g$, air duct $\mu g/g$, door mat $\mu g/mat$, tap water (peak = 2.2 $\mu g/L$). Annual air lead, central monitor, .05 \pm .005 μ g/m³. At respiratory volume 8 m³/d, intake = $0.4 \, \mu g/d$.

fn monthly PbB		$ss = 15^*; n = 82; df$		
·		SE	p	r ²
Intercept	.7651	.1469	.0001	.06
	β			
in PbHW	.2792	.0607	.0001	.29
in PbF	.1578	.0730	.03	.08
in DI	.0 787	.0200	.0002	.23
			adi r ²	.46

*Excludes the 6 children of Gp 2 with PbHW μ g \geq 2, whose monthly PbHW and PbF did not predict PbB.

CONCLUSIONS

In 21 Children 2-3 y. o., PbB 2-16.2 µg/dL

- 1. T 1/2 PbB 12-18 d,
 - Similar to Adult T 1/2 203Pb
 - Increases with PbB
- 2. Absorbed Lead (est) 5 μg/d
- 3. Ingested Lead (est) 15 µg/d
 - Food Lead 5 µg/d
 - Non Food Lead 10 μg/d
 - Non Food Lead = 2 x Handwipe Lead
- 4. PbB Predictors r²
 Handwipe Pb .29
 Household Dust Index .26
 Food Lead .08
 (2dj) .46